import os
from dotenv import load_dotenv
from loguru import logger
from simli import SimliConfig
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.runner.types import RunnerArguments
from pipecat.runner.utils import create_transport
from pipecat.services.cartesia.tts import CartesiaTTSService
from pipecat.services.deepgram.stt import DeepgramSTTService
from pipecat.services.openai.llm import OpenAILLMService
from pipecat.services.simli.video import SimliVideoService
from pipecat.transports.base_transport import BaseTransport, TransportParams
from pipecat.transports.services.daily import DailyParams
load_dotenv(override=True)
transport_params = {
"daily": lambda: DailyParams(
audio_in_enabled=True,
audio_out_enabled=True,
video_out_enabled=True,
video_out_is_live=True,
video_out_width=512,
video_out_height=512,
vad_analyzer=SileroVADAnalyzer(),
),
"webrtc": lambda: TransportParams(
audio_in_enabled=True,
audio_out_enabled=True,
video_out_enabled=True,
video_out_is_live=True,
video_out_width=512,
video_out_height=512,
vad_analyzer=SileroVADAnalyzer(),
),
}
async def run_bot(transport: BaseTransport, runner_args: RunnerArguments):
logger.info(f"Starting bot")
stt = DeepgramSTTService(api_key=os.getenv("DEEPGRAM_API_KEY"))
tts = CartesiaTTSService(
api_key=os.getenv("CARTESIA_API_KEY"),
voice_id=os.getenv("CARTESIA_VOICE_ID"),
)
simli_ai = SimliVideoService(
SimliConfig(os.getenv("SIMLI_API_KEY"), os.getenv("SIMLI_FACE_ID")),
)
llm = OpenAILLMService(api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4o-mini")
print("OPENAI_API_KEY:", os.getenv("OPENAI_API_KEY"))
messages = [
{
"role": "system",
"content": "You are a helpful LLM in a WebRTC call. Your goal is to demonstrate your capabilities in a succinct way."
},
]
context = OpenAILLMContext(messages)
context_aggregator = llm.create_context_aggregator(context)
pipeline = Pipeline(
[
transport.input(),
stt,
context_aggregator.user(),
llm,
tts,
simli_ai,
transport.output(),
context_aggregator.assistant(),
]
)
task = PipelineTask(
pipeline,
params=PipelineParams(
enable_metrics=True,
enable_usage_metrics=True,
),
idle_timeout_secs=runner_args.pipeline_idle_timeout_secs,
)
@transport.event_handler("on_client_connected")
async def on_client_connected(transport, client):
logger.info(f"Client connected")
await task.queue_frames([context_aggregator.user().get_context_frame()])
@transport.event_handler("on_client_disconnected")
async def on_client_disconnected(transport, client):
logger.info(f"Client disconnected")
await task.cancel()
runner = PipelineRunner(handle_sigint=runner_args.handle_sigint)
await runner.run(task)
async def bot(runner_args: RunnerArguments):
"""Main bot entry point compatible with Pipecat Cloud."""
transport = await create_transport(runner_args, transport_params)
await run_bot(transport, runner_args)
if __name__ == "__main__":
from pipecat.runner.run import main
main()